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Idea is to restart work on draft paper from 2010 

• Paper was an extension of the hole-clump model 
to “Angelfish”, largely by Nikolai and Herb.

• Work kind of foundered on issue of large orbit 
(variable ωci) fast ion interactions with mode.

• Issue is partially alleviated by the apparent 
observation that resonant fast ions are largely on 
“stagnant orbits”.

• Also, subsequent studies have shifted probable 
Angelfish mode i.d. from CAE to GAE.
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Angelfish (chirping GAE) observed over wide 
range of NSTX beam heated plasmas

• An important development since the 
inception of this paper has been the 
identification of Angelfish as chirping GAE. 
• further discussion to follow.

• Range of frequency chirp is large - often 
larger than continuum spacing
• discussed further below. 

• Angelfish seen at toroidal fields from 2.6 kG 
up to 5.9 kG, with up-down chirps mostly at 
low field or high beta?

• More complex chirping behavior is also 
seen, including cases without chirping.

• Evidence of interactions with nearby (in 
frequency) eigenmodes is also seen.

!3

IP ≈ 0.7 MA, PNBI ≈ 4.0 MW, Btor ≈ 2.55 kG, 𝛽 ≈ 20% Time (s)
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Outline of talk
• Discussion of identification of modes as GAE vs. 

CAE.

• Examples of asymmetric chirping and more 
complex behavior.

• Some reflectometer data showing absolute 
amplitude and possibly some constraints on 
localization.

• Orbit (SPIRAL) calculations of the resonant 
population and discussion of the ωci(R) problem.
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Observed mode frequency too low for CAE?
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• CAE eigenmode code does very well in predicting CAE frequencies.
• Much simpler than Håkan Smith’s CAE3B, but agrees well in overall 

mode structure and frequency predictions.
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This slide from Elena’s 2010 APS talk
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• Main damping mechanism for GAE is continuum damping (modeled in HYM with 
artificial viscosity):   γd/ω~(r/rres )2m+δ

• Modes with larger-m have smaller radial extent.

Low-n most unstable modes have a character of GAE modes

• Growth rates of unstable modes are very sensitive to details of distribution function (pitch-
angle).
• Most unstable mode toroidal number shifts to larger n for larger q0.
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Observed features agree with that of GAE 
mode, which exists just below the lower edge of 
the Alfven continuum: 
- For each n, several m are unstable with large  
k|| and  nm<0.
- Localized near magnetic axis.
- Large δB┴ component in the core.
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Chirp range > continuum spacing?

• This EFIT suggests 
mode localized 
towards core. 

• Poloidal mode # is 
low - kind of 
consistent with HYM 
simulation.

• In core region, chirp 
range of order 
twice(?) gap width.

• fc = (m-nq)VAlfvén/(qR)

• Wrong helicity (like ICE), but no experimental data.
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Different equilibrium reconstruction can look 
very different

• Now chirp range crosses multiple continua
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Mode number and frequency consistent with 
previous GAE scaling studies

• Not proof, but identification as GAE is consistent with dispersion 
relation calculations
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Angelfish frequency not consistent with 
empirical CAE frequency scaling
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Best bi-frequency chirps at low field or high β

• Anecdotally, the best up-down chirps are in low field shots;
• However, no extensive study has been done of this, and upward 

frequency chirps are seen at higher fields.

• At intermediate field, more complex chirping behavior can be 
found.

• At higher field, chirps are more typically just in the downward 
direction or up chirps decoupled from down chirps.

• With only down-chirps, often evidence of higher frequency 
eigenmodes.
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Does symmetry depend on 𝛽?

• At low 𝛽 chirping is more commonly only downwards?

• Up-chirp is much faster than down-chirp at low 𝛽.

• Other parameters are also changing, may not be only 𝛽.
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𝛽 ≈ 5% 𝛽 ≈ 15%
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Under some conditions, quasi-continuous 
chirping is seen

• In this case, there is also some upward chirping.
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Chirping is often not symmetric
• At higher field, chirping is more typically downward and there 

is often evidence of nearby modes.
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IP ≈ 0.3 MA, PNBI ≈ 2.0 MW, Btor ≈ 3.8 kG, 𝛽 < 2%
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Reflectometer data shows modes peaks 
towards axis

NSTX 135419, 0.293845s, 1.1 MHZ
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Low aspect ratio means large mod(B) variations 
over fast ion orbits

• Doppler-shifted resonance means particle moves into and out 
of resonance over poloidal orbit;

• more importantly, relative phase between fast ion and mode 
changes significantly and continuously

• V|| is also changing, a smaller, but reinforcing variation.

• Lower field also means that there are fewer cyclotron 
oscillations in a toroidal/poloidal orbit.

• However, orbits of fast ions satisfying the resonance constraint 
tend to be stagnant orbits with much smaller cyclotron 
frequency variations - coincidental or necessary?

• Experimental observations clearly indicate drive is possible and 
HYM calculations show that there is drive for GAE.
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Relatively few cyclotron periods/orbit
• Even at 48.6 keV and 4.64 kG there are only approximately 15 

cyclotron periods per toroidal orbit.
• That can also result in a 50% variation in ωci and V||
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In contrast, stagnant orbits have much smaller 
variation in cyclotron frequency.

• Even at 48.6 keV and 4.64 
kG there are only 
approximately 15 cyclotron 
periods per toroidal orbit.

• That can also result in a 50% 
variation in ωci and V||
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For stagnant orbits, only small change in pitch 
is needed to change resonance frequency

• (not sure what to make of this)
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Only 6 cyclotron periods per toroidal transit

• Situation is ‘worse’ in 2.6 kG cases
• But, SPIRAL calculations find near stagnant, high pitch orbits 

for fast ions expected to be resonant with GAE.
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Small ωci variation for stagnant orbits
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So, the big question…

• Even for stagnant orbits, does the 
cyclotron frequency change slowly 
enough so that the resonant ions can still 
be considered “trapped” in the wave field?

• If the resonant frequency of the fast ions 
is changing to track the observed mode 
frequency change, does that imply Vb|| is 
changing?

• ωci - k||Vb|| ≈ ωGAE


